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Each day, anti-virus companies receive large quantities of potentially harmful executables.

Many of the malicious samples among these executables are variations of earlier encountered

malware, created by their authors to evade pattern-based detection. Consequently, robust

detection approaches are required, capable of recognizing similar samples automatically.

In this thesis, malware detection through call graphs is studied. In a call graph, the func-

tions of a binary executable are represented as vertices, and the calls between those functions

as edges. By representing malware samples as call graphs, it is possible to derive and de-

tect structural similarities between multiple samples. The latter can be used to implement

generic malware detection schemes, which can proactively detect existing versions of the

malware, as well as future releases with similar characteristics.

To compare call graphs mutually, we compute pairwise graph similarity scores via graph

matchings which minimize an objective function known as the Graph Edit Distance. Find-

ing exact graph matchings is intractable for large call graph instances. Hence we investigate

several efficient approximation algorithms. Next, to facilitate the discovery of similar mal-

ware samples, we employ several clustering algorithms, including variations on k-medoids

clustering and DBSCAN clustering algorithms. Clustering experiments are conducted on a

collection of real malware samples, and the results are evaluated against manual classifica-

tions provided by virus analysts from F-Secure Corporation. Experiments show that it is

indeed possible to accurately detect malware families using the DBSCAN clustering algo-

rithm. Based on our results, we anticipate that in the future it is possible to use call graphs

to analyse the emergence of new malware families, and ultimately to automate implementing

generic protection schemes for malware families.
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Chapter 1

Introduction

In an era where information is at the center of our society, cyber criminal-
ity is faring well. Backed by large organizations, operating across multiple
countries, cyber criminals are nearly untraceable [27]. Jurisdictional issues
caused by the borderlessness of the Internet further hamper combating cyber
criminality effectively, hence rendering it a very attractive crime scene [27].
Security companies fight an ongoing war against this criminality. On a daily
basis, tens of thousands samples with potentially harmful executable code are
submitted for analysis to the data security company F-Secure Corporation
[24]. Similarly, Symantec Corporation report in their latest Internet Threat
Report [42] that to protect against malware threats, a total of 5,724,106 new
malicious code signatures were added to the signature database in 2009.
Clearly, to deal with these vast amounts of malware, autonomous systems
for protection, detection and desinfection are required. However, in practice
automated detection of malware is hindered by code obfuscation techniques
such as packing or encryption of the executable code. Furthermore, cyber
criminals constantly develop new versions of their malicious software to evade
pattern-based detection by anti-virus products. In fact there already exist
sophisticated self-modifying virusses, as well as tools to quickly produce vari-
ations of the same malware [42].
For each incoming sample of executable code, an anti-virus company typically
poses three questions:

1. Is the sample malicious or benign?

2. Has the sample been encountered before, possibly in a modified form?

3. Does the sample belong to a known malware family?

1



CHAPTER 1. INTRODUCTION 2

Analogous to the human immune system, the ability to recognize malware
families and in particular the common components responsible for the mali-
cious behavior of the samples within a family would allow anti-virus products
to proactively detect both known samples as well as future releases of samples
belonging to the same malware family. To facilitate the recognition of similar
samples or commonalities among multiple samples which have been subject
to modification, a high-level structure, i.e. an abstraction, of the samples is
required. One such abstraction is the call graph. A call graph is a graphical
representation of a binary executable in which functions are modeled as ver-
tices, and calls between those functions as edges [40].
This thesis, written as part of a joint effort of Aalto University, F-Secure
Corporation, and Nokia Corporation under the Future Internet Programme
[1], deals with the detection of malware through call graphs. So far, only a
limited amount of research has been published on automated malware iden-
tification and classification through call graphs. Flake [13] and later Dullien
and Bochum [11] describe approaches to find subgraph isomorphisms within
control flow graphs, by mapping functions from one flow graph to the other.
Functions which could not be reliably mapped have been subject to change.
Via this approach, the authors of both papers can for instance reveal differ-
ences between versions of the same executable or detect code theft. Addi-
tionally, the authors of [11] suggest that security experts could save valuable
time by only analyzing the differences among variants of the same malware.
Preliminary work on call graphs specifically in the context of malware analy-
sis has been performed by Carrera and Erdélyi [8]. To speed up the process
of malware analysis, Carrera and Erdélyi use call graphs to reveal similari-
ties among multiple malware samples. Furthermore, after deriving similarity
metrics to compare call graphs mutually, they apply the metrics to create a
small malware taxonomy using a hierarchical clustering algorithm. Briones
and Gomez [6] continued the work started by Carrera and Erdély. Their
contributions mainly focus on the design of a distributed system to compare,
analyse and store call graphs for automated malware classification. Finally,
the first large scale experiments on malware comparisons using real malware
samples were recently published in [21]. Additionally, the authors of [21] de-
scribe techniques for efficient indexing of call graphs in hierarchical databases
to support fast malware lookups and comparisons.
In this thesis, we further explore the potentials of call graph based mal-
ware identification and classification. A subdivision in three parts is made.
The first part (Chapters 2, 3) introduces call graphs in more detail and in-
vestigates graph similarity metrics to compare malware via their call graph
representations. At the basis of call graph comparisons lie graph matching
algorithms. Exact graph matchings are expensive to compute, and hence
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we resort to approximation algorithms. Part two (Chapters 4, 5) discusses
several heuristics to support the graph matching algorithms. In addition, the
accuracy of several graph matching algorithms using varying heuristics are
studied. Finally, in part three (Chapter 6) the graph similarity metrics are
used for automated detection of malware families via clustering algorithms
on a collection of real malware call graphs.



Chapter 2

Introduction to Call Graphs

Many anti-virus products deploy a pattern-based detection approach: virus
scanners are built around large databases containing byte sequences which
uniquely characterize individual malware samples. These byte sequences are
used to recognize malware hidden in files or system areas [43]. Maintaining
these databases, as well as rapid detection of malware are no trivial tasks,
especially when the malware writers deploy techniques to hinder pattern-
based detection [43]. Consequently, robust detection techniques are required
which can recognize variants of the same malware instances.
To identify both benign and malicious programs, or variations of the same
program, in a generic way, an abstraction of the software has to be derived.
One such abstraction is the call graph [40]. A call graph is a directed graph
whose vertices, representing the functions a program is composed of, are
interconnected through directed edges which symbolize function calls [40]. A
vertex can represent either one of the following two types of functions:

1. Local functions, implemented by the program designer.

2. External functions: system and library calls.

Local functions, the most frequently occurring functions in any program, are
written by the programmer of the binary executable. External functions, such
as system and library calls, are stored in a library as part of an operating
system. Contrary to local functions, external functions never invoke local
functions. Analogous to [21], call graphs are formally defined as follows:

Definition 1. (Call Graph): A call graph is a directed graph G with vertex set
V=V(G), representing the functions, and edge set E=E(G), where E(G) ⊆
V(G)×V(G), in correspondence with the function calls. For a vertex v ∈V,

4
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sub_4079C6

GetProcAddressGetModuleHandleA GetTickCount MessageBoxA

sub_407D36

sub_407D6A

HeapAlloc GetProcessHeap

sub_407D4E

sub_407D1C

start

GetCommandLineA

Figure 2.1: Example of a small call graph, derived from a malware sample
with IDA Pro. Function names starting with ’sub’ denote local functions,
whereas the remaining functions are external functions.

two functions are defined Vn(v) and Vf(v), which provide respectively the
function name and function type of the function represented by v. The func-
tion type t ∈{0,1} can either be a local function (0), or an external function
(1).

Call graphs are generated from a binary executable through static analysis of
the binary with disassembly tools [24]. First, obfuscation layers are removed,
thereby unpacking and, if necessary, decrypting the executable. Next, a
disassembler like IDA Pro [19] is used to identify the functions and assign
them symbolic names. Since the function names of user written functions
are not preserved during the compilation of the software, random yet unique
symbolic names are assigned to them. External functions however, have
common names across executables. In case an external function is imported
dynamically, one can obtain its name from the Import Address Table (IAT)
[35, 28]. When, on the other hand, a library function is statically linked, the
library function code is merged by the compiler into the executable. If this is
the case, software like IDA Pro’s FLIRT [20] has to be used to recognize the
standard library functions and to assign them the correct canonical names.
Once all functions, i.e. the vertices in the call graph, are identified, edges
between the vertices are added, corresponding to the function calls extracted
from the disassembled executable.



Chapter 3

Graph Matching

3.1 Basic terminology and notation

This section provides a short overview of the terminology and notation used
in this thesis. A graph G = (V,E) [49] is composed of vertices V and edges
E ⊆ V × V , representing functions and function calls respectively in the
context of call graphs. The order of a graph G is the number of vertices
|V (G)| in G. In this thesis, we are only dealing with directed graphs; an
edge (also known as arc) is denoted by its endpoints as an ordered pair of
vertices. The first vertex of the ordered pair is the tail of the edge, and the
second vertex is the head. A vertex v is adjacent to vertex u, if (u, v) ∈ E.
The out-degree d+(v) of vertex v is the number of vertices adjacent to v, i.e.
the number of edges which have a tail in v. Similarly, the in-degree d−(v)
equals the number of edges with their head in v. Finally, the degree d(v) of
vertex v equals d+(v) + d−(v). The out-neighborhood (successor set) N+(v)
of vertex v consists of the vertices {w|(v, w) ∈ E}, and the in-neighborhood
(predecessor set) is the set {w|(w, v) ∈ E}.

3.2 Graph matching techniques

Detecting malware through the use of call graphs requires means to com-
pare call graphs mutually, and ultimately, means to distinguish call graphs
representing benign programs from call graphs based on malware samples.
Mutual graph comparison is accomplished with graph matching.

Definition 2. (Graph matching): For two graphs, G and H, of equal order,
the graph matching problem is concerned with finding a one-to-one mapping

6
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(bijection) φ : V (G)→ V (H) that optimizes a cost function which measures
the quality of the mapping.

In general, graph matching involves discovering structural similarities be-
tween graphs [37] through one of the following techniques:

1. Finding graph isomorphisms

2. Detecting maximum common subgraphs (MCS)

3. Finding minimum graph edit distances (GED)

An exact graph isomorphism for two graphs, G and H , is a bijective function
f(v) that maps the vertices V (G) to V (H) such that for all i, j ∈ V (G),
(i, j) ∈ E(G) if and only if (f(i), f(j)) ∈ E(H) [49]. Detecting the largest
common subgraph for a pair of graphs is closely related to graph isomor-
phism as it attempts to find the largest induced subgraph of G which is
isomorphic to a subgraph in H . Consequently, one could interpret an exact
graph isomorphism as a special case of MCS, where the common subgraph
encompasses all the vertices and edges in both graphs. Finally, the last tech-
nique, GED, calculates the minimum number of edit operations required to
transform graph G into graph H .

Definition 3. (Graph edit distance): The graph edit distance is the minimum
number of elementary edit operations required to transform a graph G into
graph H. A cost is defined for each edit operation, where the total cost to
transform G into H equals the edit distance.

Note that the GED metric depends on the choice of edit operations and the
cost involved with each operation. Similar to [50, 37, 21], we only consider
vertex insertion/deletion, edge insertion/deletion and vertex relabeling as
possible edit operations.
We can now show that the MCS problem can be transformed into the GED
problem. Given is the shortest sequence of edit operations ep which trans-
forms graph G into graph H , for a pair of unlabeled, directed graphs G and
H . Apply all the necessary destructive operations, i.e. edge deletion and
vertex deletion, on graph G as prescribed by ep. The maximum common
subgraph of G and H equals the largest connected component of the result-
ing graph. Without further proof, this reasoning can be extended to labeled
graphs.
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For the purpose of identifying, quantifying and expressing similarities be-
tween malware samples, both MCS and GED seem feasible techniques. Un-
fortunately, MCS is proven to be an NP-Complete problem [16], from which
the NP-hardness of GED optimization follows by the prevous argument (The
latter result was first proven in [50] by a reduction from the subgraph isomor-
phism problem). Since exact solutions for both MCS and GED are computa-
tionally expensive to calculate, a large amount of research has been devoted
to fast and accurate approximation algorithms for these problems, mainly in
the field of image processing [15] and for bio-chemical applications [36, 48].
The remainder of this Section serves as a brief literature review of different
MCS and GED approximation approaches.
A two-stage discrete optimization approach for MCS is designed in [14]. In
the first stage, a greedy search is performed to find an arbitrary common
subgraph, after which the second stage executes a local search for a limited
number of iterations to improve upon the graph discovered in stage one.
Similarly to [14], the authors of [48] also rely on a two-stage optimization
procedure, however contrary to [14], their algorithm tolerates errors in the
MCS matching. A genetic algorithm approach to MCS is given in [45]. Fi-
nally, a distributed technique for MCS based on message passing is provided
in [5].
A survey of three different approaches to perform GED calculations is con-
ducted by Neuhaus, Riesen, et. al. in [37, 38, 32]. They first give an exact
GED algorithm using A* search, but this algorithm is only suitable for small
graph instances [32]. Next, A*-Beamsearch, a variant of A* search which
prunes the search tree more rigidly, is tested. As is to be expected, the
latter algorithm provides fast but suboptimal results. The last algorithm
they survey uses Munkres’ bipartite graph matching algorithm as an un-
derlying scheme. Benchmarks show that this approach, compared to the
A*-search variations, handles large graphs well, without affecting the accu-
racy too much. In [22], the GED problem is formulated as a Binary Linear
Program, but the authors conclude that their approach is not suitable for
large graphs. Nevertheless, they derive algorithms to calculate respectively
the lower and upper bounds of the GED in polynomial time, which can be
deployed for large graph instances as estimators of the exact GED. Inspired
by the work of Justice and Hero in [22], the authors of [50] developed new
polynomial algorithms which find tighter upper and lower bounds for the
GED problem.
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3.3 Graph similarity

In general, a virus consists of multiple components, some of which are new
and others which are reused from other viruses [24]. The virus writer will test
his creations against several anti-virus programs, making modifications along
the way until the anti-virus programs do not recognize the virus anymore.
Furthermore, at a later stage the virus writer might release new, slightly
altered, versions of the same virus. Descriptions of several possible modifi-
cation techniques used by malware writers to avoid detection by anti-virus
software are found in [7] and [43].
In this Section, we will describe how to determine the similarity between
two malware samples, based on the similarity σ(G,H) of their underlying
call graphs. As will become evident shortly, the graph edit distance plays an
important role in the quantification of graph similarity. After all, the extent
to which the malware writer modifies a virus or reuses components should
be reflected by the edit distance.

Definition 4. (Graph similarity): The similarity σ(G,H) between two graphs
G and H indicates the extent to which graph G resembles graph H and vice
versa. The similarity σ(G,H) is a real value on the interval [0,1], where
0 indicates that graphs G and H are identical whereas a value 1 implies
that there are no similarities. In addition, the following constraints hold:
σ(G,H) = σ(H,G) (symmetry), σ(G,G) = 0, and σ(G,K0) = 1 where K0

is the null graph, G 6= K0.

Before we can attend to the problem of graph similarity, we first have to
revisit the definition of a graph matching as given in the previous Section.
To find a bijection which maps the vertex set V (G) to V (H), the graphs G
and H have to be of the same order. However, the latter is rarely the case
when comparing call graphs. To circumvent this problem, the vertex sets
V (G) and V (H) can be supplemented with dummy vertices ε such that the
resulting sets V ′(G), V ′(H) are of equal size. A mapping of a vertex v in
graph G to a dummy vertex ε is then interpreted as deleting vertex v from
graph G, whereas the opposite mapping implies a vertex insertion into graph
H . Now, for a given graph matching φ, we can define three cost functions:
VertexCost, EdgeCost and RelabelCost.

VertexCost The number of deleted/inserted vertices: |{v : v ∈ [V ′(G) ∪
V ′(H)] ∧ [φ(v) = ε ∨ φ(ε) = v]}|.

EdgeCost The number of unpreserved edges: |E(G)|+|E(H)|−2×|{(i, j) :
[(i, j) ∈ E(G) ∧ (φ(i), φ(j)) ∈ E(H)]}|.
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RelabelCost The number of mismatched functions, i.e. the number of ex-
ternal functions in G and H which are mapped against different exter-
nal functions or local functions.

The sum of these cost functions results in the graph edit distance λφ(G,H):

λφ(G,H) = V ertexCost + EdgeCost+RelabelCost (3.1)

Note that, as mentioned before, finding the minimum GED, i.e.min
φ

λφ(G,H),

is an NP-hard problem, but can be approximated. The latter is elaborated
in the next Section.

Finally, the similarity σ(G,H) of two graphs is obtained from the graph edit
distance λφ(G,H):

σ(G,H) =
λφ(G,H)

|V (G)|+ |V (H)|+ |E(G)|+ |E(H)|
(3.2)

3.4 Graph edit distance approximation

Finding a graph matching φ which minimizes the graph edit distance is
proven to be an NP-Complete problem [50]. Indeed, empirical results show
that finding such a matching is only feasible for low order graphs, due to
the time complexity [32]. As a solution, Riesen and Bunke propose to use a
(|V (G)|+ |V (H)|)× (|V (H)|+ |V (G)|) cost matrix C, which gives the cost of
mapping a vertex v ∈ V ′(G) to a vertex v ∈ V ′(H) [38, 37]. Next, Munkres’
algorithm [31, 25] (also known as the Hungarian algorithm), which runs in
polynomial time, is applied to find an exact one-to-one vertex assignment
which minimizes the total mapping cost. Similar to [21], we will use this
procedure to find a graph matching for two call graphs. For a given pair of
call graphs, we first investigate which external functions they have in com-
mon. These functions can be directly mapped one-to-one. For the remaining
functions, we create a cost matrix, which is used to find the vertex mapping
using Munkres’ algorithm. The general structure of the cost matrix C is as



CHAPTER 3. GRAPH MATCHING 11

follows [37]:

C =































c1,1 c1,2 · · · c1,m c1,ε ∞ · · · ∞

c2,1 c2,2 · · · c2,m ∞ c2,ε
. . .

...
...

...
. . .

...
...

. . .
. . . ∞

cn,1 cn,2 · · · cn,m ∞ · · · ∞ cn,ε
cε,1 ∞ · · · ∞ 0 0 · · · 0

∞ cε,2
. . .

... 0 0
. . .

...
...

. . .
. . . ∞

...
. . .

. . . 0
∞ · · · ∞ cε,m 0 · · · 0 0































The top left quadrant of cost matrix C gives the cost Cv,w of matching a
real vertex v ∈ V (G) to a real vertex w ∈ V (H). Detailed descriptions for
several cost functions which calculate Cv,w are given in the next Chapter.
The top right and bottom left quadrants of cost matrix C give the cost of
matching a real vertex against a dummy vertex. In particular, Ci,ε equals
the cost of deleting a vertex, whereas Cε,j represents the cost of inserting a
vertex. The authors of [21] propose to choose Ci,ε = Cε,j = 1. However, from
our experiments it appears that better results are obtained if Ci,ε and Cε,j

are set to d(vi), vi ∈ V (G), and d(vj), vj ∈ V (H) respectively. The choice of
these costs is explained by the observation that mapping a real vertex v to a
dummy vertex, i.e. vertex deletion, will result in an increase of the EdgeCost
parameter in the edit distance metric (Equation 3.1) equal to the degree of v.
Finally, the cost of mapping a dummy vertex against another dummy vertex
is set to 0 in the bottom right quadrant of C.

3.5 Genetic search

The Hungarian algorithm discussed in the previous Section has a runtime
complexity of O(|V |3), where |V | is the vertex cardinality of the largest graph
under comparison [25]. For large call graphs, this potentially poses a prob-
lem, since it is imperative that the graph comparison is performed fast to
be applicable for malware detection and identification. Another issue is the
lack of information about the accuracy achieved when the GED is approx-
imated via the Hungarian algorithm. Therefore, as a counterweight to the
Hungarian algorithm, an alternative approach is implemented which relies
on a Genetic search algorithm to find a vertex mapping which minimizes the
GED.
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Genetic algorithms (GAs) are categorized as a special group of search algo-
rithms inspired by Darwin’s evolution theory. A GA takes a set of candidate
solutions, which is a subset of the entire search space, as input. The set
of candidate solutions is called a population or generation, and an individ-
ual in the population is called a chromosome. The GA produces successive
generations by mutating and recombining parts of the best currently known
chromosomes [29].
The GA we use to search for a vertex mapping which minimizes the GED
is based on the work of Wang and Isshii [47]. For a given pair of graphs, G
and H , such that |V (G)| ≤ |V (H)|, each chromosome represents an injective
matching of the vertices from graph G to the vertices in graph H . Each
chromosome can be thought of as a list of |V (G)| genes, where each gene
represents a unique mapping of a vertex v ∈ V (G) onto a vertex w ∈ V (H).
The ’fitness’ of a gene indicates how well vertex v ∈ V (G) maps onto vertex
w ∈ V (H). To calculate the fitness of a gene, one can use the same cost func-
tions as used to calculate the entries of the cost matrix C for the Hungarian
algorithm as discussed in the previous Section. Examples of possible cost
functions are given in the next chapter. Finally, the quality of a complete
matching, i.e. the fitness of a chromosome, is assessed via the GED (Equation
3.1). A chromosome has a higher fitness compared to the fitness of another
chromosome if the vertex mapping it represents results in a lower GED than
that of the other chromosome.
Chromosomes for the initial population are generated at random; vertices
in graph G are matched randomly against vertices in graph H , under the
restriction that the result is an injective mapping. Furthermore, to ensure
diversity of the individuals in the population, no two chromosomes in the
initial population can be identical.
A new population is created by performing crossover operations and muta-
tions on the chromosomes of the current population. Crossover operations
can be interpreted as a recombination of two parent chromosomes, thereby
obtaining a single child chromosome, which inherits the qualities of both
parents. For a given pair of chromosomes, A, B, where the fitness of chro-
mosome A is larger or equal to the fitness of chromosome B, the crossover
operation is now defined as follows (Figure 3.1a) [47]:

1. Copy all genes from chromosome A which have a higher or equal fitness
compared to the corresponding genes in chromosome B to the offspring.
Copy the remaining genes from chromosome B to the offspring.

2. The offspring should be an injective mapping; a single vertex in graph
H cannot be mapped to multiple vertices in graph G. This require-
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Figure 3.1: Genetic selection and crossover (Source: [47])

ment can however be violated when one copies the remaining genes
from chromosome B to the offspring after having the fitter genes se-
lected from chromosome A (Figure 3.1a). These violations are solved
by selecting an unused vertex from graph H to be matched against the
respected vertex in graph G.

3. Finally, the fitness of the new offspring is compared against the fitness
of parent A. If the fitness of parent A is higher, we discard the new
offspring and we use parent A as the new offspring. This procedure
ensures that the total fitness of the population remains the same or
improves during each cycle in the evolution.

The selection of chromosomes for the crossover operation is depicted in Figure
3.1b. The general idea behind this selection scheme is to combine chromo-
somes of lower fitness with chromosomes of higher fitness to discover new
chromosomes of even higher fitness, while simultaneously preserving diver-
sity among the chromosomes [47]. First the chromosomes in a population
are sorted according to decreasing fitness. Next, the crossover procedure is
performed on the ith and (i+ 1)th chromosome for i = [1, 2, ..., n+1

2
], as well

as on the jth and (n+1−j)th chromosome for j = [1, 2, .., n
2
], where n equals

the population size (Figure 3.1b).
Finally, to further improve the population diversity, mutations are performed.
For a fixed number of chromosomes, genes are changed at random, while pre-
serving the requirement that the resulting chromosome should be an injective
mapping.



Chapter 4

Vertex Matching

The approximation algorithm for the graph edit distance as discussed in
Chapter 3.4 attempts to find the smallest edit distance by solving a least
cost assignment problem on a cost matrix C. The entries in this matrix
represent the cost of matching i ∈ V (G) to j ∈ V (H). Similarly, the GA
discussed in Section 3.5 uses these vertex match costs to direct the search
toward an optimal solution. This chapter derives several cost functions as
estimators of Ci,j: the cost of matching vertex i to vertex j. Clearly, more
accurate cost estimations will enable us to find better graph matchings and
hence more accurate edit distances.

4.1 Structural Matching

The cost of matching a pair of nodes, Ci,j could equal the relabeling cost as
defined for the graph edit distance in Equation 3.1:

Crel(i, j) =







0 if Vf(i) = Vf(j) = 0
0 if Vf(i) = Vf(j) = 1 ∧ Vn(i) = Vn(j)
1 otherwise

(4.1)

Using this relabeling cost function, Munkres’ algorithm is capable of match-
ing identical external functions in a pair of graphs, but the local functions
pose a problem because the relabeling cost function yields no information
about the different local functions. As a solution, the authors of [21, 50]
independently suggest to embed structural information in the matching cost
of two functions. The following equation achieves the latter by also taking

14
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the neighborhoods of vertices (functions) i and j into consideration:

Ci,j =Crel(i, j)+

d+(i) + d+(j)− 2× (N+(i) ∧N+(j))+

d−(i) + d−(j)− 2× (N−(i) ∧N−(j))

(4.2)

where the notation N ∧M denotes the similarity of the neighborhoods N
and M , defined as follows:

N ∧M = max{
∑

i∈N

(1− Crel(i, P (i))|

P : N →M (injective)}

In short, the above equation makes the assumption that if two functions i,
and j are identical, then they should also invoke the same functions. Simi-
larly, if i and j indeed represent the same function, it is likely that they are
also called upon by functions with a high mutual similarity.

4.2 Random Walk Probability Vectors

In the previous Subsection, all local functions in the neighborhood of ver-
tices v and w are considered identical due to the lack of information about
the functions and their canonical names, and hence there is no relabeling
cost induced when two local functions are matched (Equation 4.1). In real-
ity however, two local functions can rarely be considered identical. In this
Section, a more fine-grained approach is developed to estimate the similarity
between two local functions with a higher accuracy. In this context, similarity
is defined as follows:

Definition 5. (Vertex similarity): The similarity σ(v,w) between two ver-
tices v ∈ V (G) and w ∈ V (H) indicates the extent to which function Vn(v)
resembles function Vn(w). Similar to the definition of graph similarity,
σ(v,w) is a real value on the interval [0,1].

Before the similarity between two vertices can be calculated, we first need
to establish a metric which allows for mutual comparison between two local
functions. Let S and T be partitions of V such that S = {v ∈ V (G)|N+(v) =
∅ ∨N+(v) = {v}} and T = V (G) \ S. The vertices in S are terminal nodes:
they do not call other functions except possibly themselves, and are therefore
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represented as leaves in the graph. Typically, all external functions belong
to the set S, in addition to some local functions. This partitioning allows us
to interpret the call graph as an absorbing Markov chain, where T contains
the transient states, and S the absorbing states (Figure 4.1).

Definition 6. (Absorbing Markov Chain): An absorbing Markov chain is a
weighted directed graph G, where a path exists from each vertex v ∈ V (G) to
an absorbing state s. The weight of an edge w(i, j) in an absorbing Markov
chain denotes the probability of moving from state i to state j. A state s ∈
V (G) is called absorbing if it is impossible to leave it, i.e. d+(v) = 0∨N+(v) =
{v} 1. For all absorbing states i, w(i, i) = 1 [17]. Furthermore, w(i, j) > 0
for all (i, j) ∈ E and

∑

j w(i, j) = 1 for all i ∈ V .

To characterize a vertex vi, a probability vector P vi is associated with it2:
P vi = (pviv1 , p

vi
v2
, ..., pvivk), where p

vi
vj
denotes the probability that a random walk

from vertex vi terminates in absorbing state vj . We will refer to these vectors
as Random walk probability (RWP) vectors. Note that for each RWP vector,
the following equation holds:

|P vi |
∑

j=0

pvivj = 1 (4.3)

Definition 7. (Simple Random Walk): Given a graph G. A simple random
walk from vertex v0 ∈G is an alternating sequence v0,e1,v1,...,ek,vk of edges
and vertices where the probability of moving from vertex vi via edge ei+1 to
vertex vi+1 equals 1

d+(vi)
. Let pv0vk denote the probability that a simple random

walk which starts in v0 ends in vk. The probability pv0vk satisfies the recursive
formula:

pv0vk =

∑

w∈N+(v0)
pwvk

d+(v0)

pvkvk = 1

RWP vectors provide an abstract means to characterize transient functions.
Intuitively, two functions with the same RWP vectors have a high probability

1Strictly speaking, true absorbing Markov chains do not have states with d+(v) = 0; all
absorbing states obey N+(v) = {v}. However, this extension of the concept of absorbing
states allows us to interpret call graphs as absorbing Markov chains.

2This characterization idea is proposed by prof Pekka Orponen [33]. Efficient calcula-
tions of these vectors are explored by the author as part of this thesis work.
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Figure 4.1: Absorbing Markov chain. Vertices 0,4 are absorbing states,
whereas 1,2 and 3 are the transient states. Source:[17]

A B C

0

1 2

3

Graph G

A C D

0

1

Graph H

External Function (absorbing)

Local Function (absorbing)

Local Function (transient)

Figure 4.2: Two call graphs with a mutual absorbing state set S = {A,C, ε}.

to have similar functionality and behave in the same way. Consequently, a
high similarity score should be assigned to them compared to two functions
with very different RWP vectors.
To calculate the similarity of two vertices from different graphs, their similar-
ity vectors should have the same dimensions. The latter requirement can be
met by choosing the set with absorbing states S as S = {v ∈ V (G)|Vf(v) =
1} ∩ {v ∈ V (H)|Vf(v) = 1} ∪ {ε}. Here ε is a dummy vertex which symbol-
izes all absorbing states outside the intersection of the external functions in
graphs G and H . An example has been depicted in Figure 4.2.

The problem which now arises is how to calculate the RWP vectors for a
given graph G in an efficient and scalable fashion. After all, call graphs can
contain thousands of vertices and edges. The answer lies in the use of a
stochastic transition matrix and the theory behind absorbing Markov chains
[17]. First, obtain a |V (G)| × |V (G)| stochastic transition matrix P , where

Pi,j =







1
d+(i)

if i ∈ T , j ∈ (S ∪ T ), (i, j) ∈ E(G)

1 if i, j ∈ S, Vf(i) = Vf (j)
0 otherwise

In accordance with definition 6, each entry Pi,j in P represents the proba-
bility of moving from state i to j. Now one can reorder the states in the
transition matrix so that the transient states come first. The result should
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be a transition matrix which can be represented in the following canonical
form [17]:

P =





TR. ABS.

TR. Q R

ABS. 0 I



 (4.4)

Here, 0 is an |S| × |T | zero matrix, and I an |S| × |S| identity matrix.

Definition 8. Let P be the stochastic transition matrix of an absorbing
Markov chain. Then P n

i,j of the matrix P n is the probability to reach state j,
starting from state i, in n state transitions [17].

In particular, for the purpose of the RWP vectors, we are interested in sub-
matrix Rn (Eq. 4.4) of matrix P n, when n→∞; the long-term probabilities
of reaching absorbing state j ∈ S from a transient state i ∈ T . A matrix con-
taining these long-term probabilities is obtained via the following equation
[17]:

N = (I −Q)−1 (4.5)

B = N × R (4.6)

Here, I and Q are the submatrices as defined in Eq. 4.4. In the context of
absorbing Markov chains, matrix N (Eq. 4.5) is sometimes referred to as
the fundamental matrix. An entry ni,j in N gives the expected number of
times transient state j occurs in a sequence of state transitions which starts
in state i, before the sequence terminates in an absorbing state [17]. Finally,
a row vector Bi in the result matrix B (Eq. 4.6) represents the RWP vector
for transient state i. As an example, Table 4.1 shows the RWP vectors for
graph G in Figure 4.2.

Given two transient states v ∈ V (G), and w ∈ V (H), and their corresponding
RWP vectors P v, respectively Pw, the similarity score σ(v, w) as defined in
Definition 5 can now be calculated using the total variation distance, closely
related to the `1 norm, over the RWP vectors:

σ(v, w) =
1

2

|Pw|
∑

i=1

|pvi − pwi |, 0 ≤ σ(v, w) ≤ 1 (4.7)

For two external functions, v ∈ V (G) and w ∈ V (H), σ(v, w) = 0 if they
represent the same external function. In all other cases, σ(v, w) equals 1.
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Table 4.1: Example of a stochastic transition matrix and corresponding RWP
vectors, based on graph G in Figure 4.2

Throughout the reasoning in this Subsection, we made the following implicit
assumption: a call-graph can always be converted to an absorbing Markov
chain as defined in Definition 6. Unfortunately, there exist call-graphs which
violate Definition 6; not all states have a path to an absorbing state. An
example of such a violation is depicted in Figure 4.3a; the strongly connected
component marked by the dashed box has no outgoing edges to an absorbing
vertex. We will refer to these structures as ’nontrivial sinks’ because from
a structural point of view a nontrivial sink behaves as an absorbing state.
Once a state transition reaches a nontrivial sink, it is impossible to get out
of the nontrivial sink again.

When a nontrivial sink is present in the call graph, Equation 4.5 is rendered
invalid because I − Q results in a singular matrix, which one cannot invert.
Two solutions exist to deal with this problem:

1. Relax the matrix inversion in Eq. 4.5 through the use of Generalized
matrix inversion [30].

2. Remove the nontrivial sink structures.

The generalized matrix inversion (GMI) [30] preserves most of the properties
of the normal matrix inversion (MI). In fact, for a nonsingular matrix the
result obtained via GMI is identical to the result of MI. However, for a singu-
lar matrix, GMI produces a non-unique estimate of a matrix inverse. After
applying GMI to a singular matrix, the result can be directly plugged into
equation 4.6. Although this approach does not require any preprocessing of
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Figure 4.3: When a stochastic matrix is created based on the graph in Figure
4.3a, the result is a singular matrix caused by the sink marked by the dashed
box. The nontrivial sink can be removed with Algorithm 2 resulting in the
graph depicted in Figure 4.3b

the call graph, the downside is that the vectors in matrix B (Eq. 4.6) no
longer obey the property of RWP vectors as defined in Eq. 4.3, which makes
it much harder to interpret the RWP vectors. Therefore, a more natural
and computationally inexpensive solution is to remove the sink structures
altogether. The latter can be achieved by identifying the nontrivial sinks,
and connecting them with an absorbing local function; after all, a nontrivial
sink structure behaves exactly the same as an absorbing local function. Note
that this procedure does not change the RWP vectors. Identifying vertices
which are part of sink structures can be achieved using Algorithm 1. Next,
the nontrivial sinks can be removed by adding a dummy vertex dstate, rep-
resenting an absorbing state, to V (G), and adding edges from all identified
vertices to the dummy vertex (Algorithm 2). The result of Algorithms 1 and
2 on the graph in Figure 4.3a is depicted in 4.3b.
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Algorithm 1: Identify vertices in sink structures

Input: Call graph G
Output: Set of vertices which belong to sinks in the call graph

1 Queue open ← {v ∈ V (G)|d+(v) = 0 ∨N+(v) = {v}};
2 visited ← ∅;
Move in an upward sweep through the graph, starting at the leaves
(absorbing states), thereby marking all reachable vertices

3 while open 6= ∅ do
4 v ← pop(open);
5 visited← visited ∪ {v};
6 foreach w ∈ N−(v) do
7 if w /∈ visited then
8 open← open ∪ {w};
9

10 return V (G)\visited

Algorithm 2: Neutralize all sink structures in a graph

Input: Set of vertices S which are part of sinks
Output: A graph G′ where all sinks are removed

Add a dummy absorbing state dstate to the graph, and connect all
vertices in S to the dummy vertex.

1 V (G′)← V (G) ∪ {dstate};
2 E(G′)← E(G);
3 foreach v ∈ S do
4 E(G′)← E(G′) ∪ {(v, dstate)};

5 return G′(V,E)



Chapter 5

Graph similarity: experimental
results

Chapter 3 introduced two algorithms (Sections 3.4 and 3.5) which attempt to
find a vertex mapping (bijection) for a given pair of graphs which minimizes
the Graph Edit Distance (Equation 3.1). In order to find a mapping that
approximates the minimum GED as well as possible, both algorithms require
good cost estimations of matching one function against the other. Two es-
timators are presented in Chapter 4. The first estimator (Section 4.1) uses
a relabeling cost function and a neighborhood comparator (Equation 4.2),
whereas the second utilizes Random Walk Probability vectors (Section 4.2).
The main purpose of this chapter is to evaluate the performance of these
two estimators, as well as two additional hybrid versions. The evaluation is
conducted on a set of 194 call graphs provided by the data security company
F-Secure Corporation.

5.1 Graph similarity metrics

In Section 3.4, the Hungarian algorithm has been introduced, which finds a
vertex mapping of minimum cost for a given pair of graphs. Using Equations
3.1 and 3.2, one can calculate the GED and corresponding graph similarity
score for the resulting vertex mapping.
Figure 5.1 shows the similarity scores obtained via the Hungarian algorithm
with four different vertex matching cost estimators on a set of 1000 unique
graph pairs selected randomly from our call graph data set. The outcomes of
the first estimator, based on relabeling costs and neighborhood comparisons

22
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(Equation 4.2) as presented in Section 4.1 are depicted by the green curve.
Since this estimator is also applied in [50, 21], we will use it as a reference
against which we situate the outcomes of the three other estimators.
Section 4.2 argues that the relabeling cost function (Equation 4.2) used in the
former estimator is not an accurate approach to compare functions, since it
cannot distinguish between local functions. Therefore, Section 4.2 introduces
Random Walk Probability vectors to uniquely characterize a function. The
vertex similarity scores obtained via Equation 4.7 can be directly inserted
into the cost matrix used by the Hungarian algorithm. The resulting pair-
wise graph similarities are shown with purple in Figure 5.1. It is interesting
to observe that this approach allows us to find for some graphs lower Graph
Edit Distances, and consequently higher pairwise similarities. However, in
most comparisons this approach is outperformed by the former vertex match
cost estimator.
Based on the previous results, we attempted to combine Equations 4.2 and
4.7 into a new estimator to further improve the accuracy of the similarity
scores. Combination of the two Equations is performed by replacing the rela-
beling cost function (Equation 4.1) in Equation 4.2 with Equation 4.7 which
calculates the vertex similarity scores via the RWP vectors. The results of
the newly obtained estimator are depicted by the dark blue line in Figure
5.1. Unfortunately, one can observe that the latter results are very similar to
those obtained via the relabeling cost function (Figure 5.1, green line). Only
for a few graph pairs a smaller GED was found. Finally, purely from an
experimental point of view, we replaced the relabeling function by Equation
4.7 only in the neighborhood comparison, i.e. in the ’where’ clause, of Equa-
tion 4.2, while preserving the relabeling function (Equation 4.1) in the main
body of Equation 4.2. The result, depicted by the red line in Figure 5.1 does
not show any significant deviation from the previous estimator (light blue
line). Just for a small number of graph pairs a marginal accuracy increase is
observed.
Comparing the approaches which use the more computationally expensive
similarity scores obtained via the RWP vectors against the cheap relabeling
cost function as proposed in [50, 21], we have to conclude that the accuracy
gain is too low to outweigh the extra computation time involved.
As an alternative to the Hungarian algorithm, a genetic search algorithm
is presented in Section 3.5. The algorithm requires two parameters: the
population size and a mutation rate. The former has been fixed to 100 chro-
mosomes, and a single gene is mutated in 30% of the chromosomes in the
population after crossover has been applied. Unfortunately, the average run-
time of the genetic search algorithm appears to be significantly longer than
the runtime of the Hungarian algorithm to find results of equal accuracy.
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Figure 5.1: Comparison of four estimators used in cooperation with the Hun-
garian algorithm in an attempt to find, for a given pair of graphs, a vertex
matching which minimizes the GED.

Various changes to both the population size as well as the mutation rate did
not change these results. The remainder of this thesis will therefore utilize
Equation 4.2 in combination with the Hungarian algorithm to estimate the
minimum GED and corresponding graph similarity.

5.2 Malware family analysis

An important goal of the graph comparisons is the ability to recognize mal-
ware samples with strong similarities. Before we turn to the subject of fully
automated malware identification and classification in the subsequent Sec-
tions, this Section briefly investigates the meaning of graph similarity in the
context of malware. To this extent, the earlier mentioned data set consisting
of 194 call graphs of malware samples has been partitioned into 24 malware
families by analysts of F-Secure Corporation. This classification is performed
by an analyst via semantic evaluation of the malware behavior. The sam-
ples within each of the families are believed to have a mutual similarity. We
have taken four of the larger families and compared the graphs within each
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family mutually (Figure 5.2). The Baidu family, for instance, consists of 10
samples, and hence we can make 102−10

2
= 45 pairwise comparisons. The

resulting similarity scores are depicted in the frequency chart (Figure 5.2a).
Note that we do not compare a graph against itself, since this always results
in a similarity score of 0 (σ(G,G) = 0), in accordance with Equation 3.2.
Ideally, all samples within a family would exhibit a strong mutual similar-
ity, but as one can observe from Figure 5.2 this is not necessary the case.
Each of the four families contain some samples which are significantly dis-
tinct from the other samples in the same family. For identification purposes,
it is not strictly required that a sample has a high similarity to all other
samples in its family, as long as there are no samples in other families with
a higher resemblance because this would lead to classification errors. Figure
5.3 compares samples between families. Indeed, Figure 5.3 shows that the
selected families are significantly dissimilar. A high similarity among the
samples within a family, together with a high dissimilarity between different
families would highly simplify malware identification and classification. The
next chapter will examine graph classification in greater detail; based on the
graph similarity scores, we will attempt automated partitioning and family
recognition.
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(a) Baidu (10 samples)

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(b) Boaxxe (17 samples)
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(c) Pushbot (15 samples)

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(d) Systemhijack (14 samples)

Figure 5.2: Intra family comparison. The samples inside a family are com-
pared mutually. Typically, one would expect a high similarity among the
samples within a single family.
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Figure 5.3: Inter family comparison. The samples among families are com-
pared. Typically, one would expect no or few similarities between families.



Chapter 6

Clustering

To support the identification process, an important step is to be able to
classify malware samples, thereby grouping similar samples together. This
chapter focuses on the clustering of malware samples into malware families.

6.1 k-medoids clustering

One of the most commonly used clustering techniques is k-means clustering.
The formal description of k-means clustering is summarized as follows [3, 10]:

Definition 9. (k-means Clustering): Given a data set χ with samples, where
each sample x ∈ χ is represented by a vector of parameters. k-means cluster-
ing attempts to group all samples into k clusters. For each cluster Ci ∈ C,
a cluster center µCi

can be defined, where µCi
is the mean vector, taken over

all the samples in the cluster. The objective function of k-means clustering
is to minimize the total squared Euclidean distance ||x− µCi

||2 between each
sample x ∈ χ, and the cluster center µCi

of the cluster the sample has been
allocated to:

min

k
∑

i=1

∑

x∈Ci

||x− µCi
||2

The above definition assumes that for each cluster, it is possible to calculate
a mean vector, the cluster center (also known as centroid), based on all the
samples inside a cluster. However, with a cluster containing call graphs, it
is not a trivial procedure to define a mean vector. Consequently, instead of
defining a mean vector, a call graph inside the cluster is selected as the cluster
center. More specifically, the selected call graph has the most commonalities,
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i.e. the highest similarity, with all other samples in the same cluster. This
allows us to reformulate the objective function:

min
k

∑

i=1

∑

x∈Ci

σ(x, µCi
)

where σ(G,H) is the similarity score of graphs G andH as discussed in Chap-
ter 3. The latter algorithm is more commonly known as a k-medoids clus-
tering algorithm, where the cluster centers µCi

are referred to as ’medoids’.
Since finding an exact solution in accordance with the objective function has
been proven to be NP-hard [9], our k-medoids clustering utilizes an iterative
approach 1. First, the k-medoids clustering algorithm finds an arbitrary so-
lution, after which the algorithm attempts to find better solutions until no
more improvements occur. The pseudo-code of the k-medoids algorithm is
given in Algorithm 3.

Algorithm 3: The k-medoids clustering algorithm

Input: Number of clusters k, set of call graphs χ.
Output: A set of k clusters C

1 foreach Ci ∈ C do
2 Initialize µCi

with an unused sample from χ;

3 repeat
4 Classify the remaining |χ| − k call graphs. Each sample x ∈ χ

is put in the cluster which has the most similar cluster medoid;
5 foreach Ci ∈ C do
6 Recompute µCi

;

7 until The objective function converges ;
8 return C = C0, C1, ..., Ck−1

In [26], a formal proof on the convergence of k-means clustering with respect
to its objective function is given. To summarize, the authors of [26] proof that
the objective function decreases monotonically during each iteration of the
k-means algorithm. Because there are only a finite number of possible clus-
terings, the k-means clustering algorithm will always obtain a result which
corresponds to a (local) minimum of the objective function. Since k-medoids

1The author of this thesis designed this algorithm as a variation of the k-means clus-
tering algorithm. Later he discovered that this variation has also been independently pro-
posed by Park and Jun [34] as an improved version of the Partitioning Around Medoids
clustering algorithm [23].
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clustering is directly derived from k-means clustering, the proof also applies
for k-medoids clustering.
To initialize the cluster medoids, we use three different algorithms. The first
approach, Algorithm 4, selects the centroids at random from χ.
Arthur and Vassilvitskii observed in their work [3] that k-means clustering,
and consequently also k-medoids clustering, is a fast, but not necessarily
accurate approach. In fact, the clusterings obtained through k-means clus-
tering can be arbitrarily bad [3]. In their results, the authors of [3] conclude
that bad results are often obtained due to a poor choice of the initial cluster
centroids, and hence they propose a novel way to select the initial centroids,
which considerably improves the speed and accuracy of the k-means cluster-
ing algorithm [3]. The algorithm, referred to by the authors as k-means++,
is given in Algorithm 5.
Finally, the last algorithm to select the initial centroids will be used as a
means to assess the quality of the clustering results. To assist the k-medoids
clustering algorithm, the initial medoids are selected manually. We will refer
to this initialization technique as ”Trained initialization”.

Algorithm 4: Initializing cluster medoids: uniform random medoid
selection

Input: Number of clusters k, set of call graphs χ.
Output: k cluster medoids µCi

1 for i = 1 to k do
2 µCi

← random graph x ∈ χ;
3 χ← χ\{µCi

};

4 return µC0
, µC1

, ..., µCk−1

6.2 Clustering performance analysis

In this Section, we will test and investigate the performance of the clustering
approaches, in combination with the graph similarity scores obtained via the
GED algorithm discussed in Chapter 3. The data set χ we will use consists
of 194 samples which are manually classified by F-Secure Corporation into
24 families. Evaluation of the cluster algorithms is performed by comparing
the obtained clusters against these 24 partitions. To get a general impression
of the samples, the call graphs in our test set contain on average 234 nodes
and 488 edges. The largest sample has 748 vertices and 1875 edges. Family
sizes vary from 2 samples to 17 samples.
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Algorithm 5: Initializing cluster centroids: k-means++

Input: Number of clusters k, set of call graphs χ.
Output: k cluster medoids µCi

1 Take µC0
at random from χ;

2 repeat
3 Take a new medoid µCi

from χ, choosing x ∈ χ with probability
D(x)2∑

y∈χ D(y)2
;

Here, D(x) is the similarity of x ∈ χ and the most similar
medoid µCi

which has been selected so far.

4 until k medoids have been chosen;
5 return µC0

, µC1
, ..., µCk−1

Before k-medoids clustering can be applied on the data collection, we need
to select a suitable value for k. Let koptimal be the natural number of clusters
present in the data set. Finding koptimal is not a trivial task. One could
argue that koptimal equals 24, the number of families F-Secure provided us
with. This, however, is not necessarily a correct assumption. As an analogy,
we could attempt to perform clustering on a large group of people. The clus-
tering criteria could, among others, be eye color, or family ties. Both criteria
yield valid, but possibly different clusters of varying sizes. Hence, koptimal

depends on the selected cluster criteria. The same holds for the call graph
clusters as provided by F-Secure. Although two malware samples could be
very dissimilar from a graph-structural point of view, both samples could
have similar behavior or malicious purposes. Consequently, a malware ana-
lyst might decide to categorize both samples in the same family.
Since koptimal is unknown, we attempt to find it by trying multiple values
for k, and measuring the quality of the obtained clustering (Figure 6.1). In
Figure 6.1, the average distance d̄(xi, µCi

) between a sample xi in cluster Ci

and the medoid of that cluster µCi
is plotted against the number of clusters

in use. Note that each time k-medoids clustering is repeated, the algorithm
could yield a different clustering due to the randomness in the algorithm.
Hence, for a given number of clusters k, we run k-medoids clustering 50
times, and average d̄(xi, µCi

). When the number of clusters k equals 1, then
the average distance d̄(xi, µCi

) is maximal. d̄(xi, µCi
) converges to 0 when k

increases towards the number of samples in the data set. Ideally, when one
plots d̄(xi, µCi

) against an increasing number of clusters, one should observe
a quick decreasing d̄(xi, µCi

) on the interval [k = 1, koptimal] and a slowly
decreasing value on the interval [koptimal, k = |χ|]. Unfortunately, figure 6.1
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shows a steadily decreasing curve for k = [1, 50], which makes it impossible
to deduce koptimal from Figure 6.1. A more in-depth discussion on how to
find the koptimal using alternative quality metrics is given in the next Section.
For now, we assume that koptimal equals 24 as follows from the manual par-
titioning of the samples by F-Secure.
When comparing the different initialization methods of k-medoids clustering,
based on Figure 6.1, one can indeed conclude that k-means++ yields better
results than the randomly initialized k-medoids algorithm. Furthermore, the
best results are obtained with Trained clustering where a member from each
of the 24 predetermined malware families is chosen as the initial medoid of
a cluster.
Figures 6.2, 6.3 depict heat maps of two possible clusterings of the sample
data. Each square in the heat map denotes the presence of samples from a
given malware family in a cluster. As an example, cluster 0 in Figure 6.2
comprises 86% Ceeinject samples, 7% of Runonce samples and 7% of Neeris
samples. The family names are invented by data security companies and
research labs and serve as a means to distinguish families, but a detailed dis-
cussion about the characteristics of each family is beyond the scope of this
thesis.
Figure 6.2 shows the results of k-medoids clustering with Trained initializa-
tion. The initial medoids are selected by manually choosing a single sample
from each of the 24 families identified by F-Secure. The clustering results
are very promising: nearly all members from each family end up in the same
cluster (Figure 6.2). Only a few families, such as Baidu and Boaxxe, are
scattered over multiple clusters, which is in accordance with our findings in
Section 5.2. Figure 6.3 shows the clustering results of k-means++ 2, without
the use of vertex matching. Clearly, the clusterings are not as accurate as
with our trained k-medoids algorithm; samples from different families are
merged into the same cluster. Nevertheless, in most clusters samples orig-
inating from a single family are prominently present. Yet, before one can
conclude whether k-means++ clustering is a suitable algorithm to perform
call graph clustering, one first needs an automated procedure to discover,
or at the minimum estimate with reasonable accuracy, koptimal. This will be
investigated in the next Section.

2A similar figure for randomly initialized k-medoids clustering is omitted due to its
reduced accuracy with respect to k-means++.
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Figure 6.2: A heat map depicting a non-unique clustering of 194 samples
in 24 clusters using trained k-means clustering. For this particular result,
d̄(xi, µCi

) = 0.221. The color of a square depicts the extent to which a
certain family is present in a cluster.
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Figure 6.3: A heat map depicting a non-unique clustering of 194 samples in 24
clusters using k-means++ clustering. For this particular result, d̄(xi, µCi

) =
0.240.



CHAPTER 6. CLUSTERING 35

6.3 Determining the number of clusters

In the previous chapter, a brief discussion about the optimal number of
clusters koptimal has been included. However, from the graph depicted in
Figure 6.1, it is not evident which value should be chosen as koptimal, based
on the average distance from a sample to its corresponding cluster centroid.
In this Section, three additional techniques for finding koptimal are explored.

6.3.1 Sum of (Squared) Error

The Sum of Error (SEp), measures the amount of scatter in a cluster. The
general formula of SEp is:

SEp =

k
∑

i=1

∑

x∈Ci

(d(xi, µCi
))p (6.1)

In this equation, d(x, y) is a distance metric which measures the distance be-
tween a sample and its corresponding cluster centroid (medoid) as a positive
real value. Here we choose d(xi, µCi

) = 100×σ(xi, µCi
). The most commonly

used value for p in Equation 6.1 equals 2. The resulting equation is known as
the Sum of Squared Error (SSE) [44]. The power p can be altered to penalize
outliers, i.e. vertices which are relatively distant from their cluster medoids,
more or less severely.

6.3.2 Silhouette Coefficient

The average distance between a sample and its cluster medoid as used as a
performance measure in Section 6.2, measures the cluster cohesion [44]. The
cluster cohesion expresses how similar the objects inside a cluster are. The
cluster separation on the other hand reflects how distinct clusters mutually
are. An ideal clustering results in well-separated (non-overlapping) clusters
with a strong internal cohesion. Therefore, koptimal equals the number of clus-
ters which maximizes both cohesion and separation. The notion of cohesion
and separation can be combined into a single function which expresses the
quality of a clustering: the silhouette coefficient [44, 39].
For each sample xi ∈ χ, let a(xi) be the average similarity of sample xi ∈ Ck

in cluster Ck to all other samples in cluster Ck:

a(xi) =

∑

xj∈Ck
σ(xi, xj)

|Ck| − 1
(xi ∈ Ck)
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Furthermore, let bk(xi), xi /∈ Ck be the average similarity from sample xi to
a cluster Ck which does not accommodate sample xi.

bk(xi) =

∑

xj∈Ck
σ(xi, xj)

|Ck|
(xi /∈ Ck)

Finally, b(xi) equals the minimum such bk(i):

b(xi) = min
k

bk(xi) k ∈ {0, 1, .., |C|}

The cluster for which bk(xi) is minimal is the second best alternative cluster
to accommodate sample xi. From the discussion of cohesion and separation,
it is evident that for each sample xi, it is desirable to have a(xi) � b(xi) so
to obtain a clustering with tight, well-separated clusters.
The silhouette coefficient of a sample xi is defined as:

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(6.2)

It is important to note that s(xi) is only defined when there are 2 or more
clusters. Furthermore, s(xi) = 0 if sample xi is the only sample inside its
cluster [39].
The silhouette coefficient s(xi) in Equation 6.2 always is a real value on the
interval [−1, 1]. To measure the quality of a cluster, we can simply compute
the average silhouette coefficient over the samples of the respected cluster.
An indication of the overall clustering quality is obtained by averaging the
silhouette coefficient over all the samples in χ.
For a single sample xi, s(xi) reflects how well the sample is classified. Typ-
ically, when s(xi) is close to 1, the sample has been classified well. On the
other hand, when s(xi) is a negative value, then sample xi has been classified
into the wrong cluster. Finally, when s(xi) is close to 0, i.e. a(xi) ≈ b(xi), it
is unclear to which cluster sample xi should belong: there are at least two
clusters which could accommodate sample xi well.
The silhouette coefficient provides important information about the optimal
number of clusters. When the number of clusters is chosen too small such
that several natural clusters are merged together, there will be clusters with
a relatively bad cohesion. Consequently, the samples in those clusters have
a relatively high a(xi), resulting in a low silhouette coefficient s(xi) for these
samples. If, on the other hand, the number of clusters is chosen too high,
some natural clusters will split into two or more clusters. Samples belonging
to those natural clusters typically have low values for b(xi). The latter again
causes low silhouette coefficients.



CHAPTER 6. CLUSTERING 37

φ(χ)

χ

Figure 6.4: Sample point distribution when 2-dimensional data points in a
perfectly distributed cluster are projected to a 1-dimensional space.

6.3.3 G-means algorithm

The k-medoids clustering algorithm implicitly assumes that one can partition
all samples in such a way that the samples inside a cluster are spherically dis-
tributed around a single sample: the cluster medoid. The sample density in
the direct vicinity of this sample is high, and decreases the further one moves
away from the center. Theoretically, each sample point can be represented by
a multidimensional vector, marking the location of the sample with respect
to the medoid in a multidimensional space. Consequently, when the samples
inside a cluster are projected onto a straight line, a 1-dimensional represen-
tation of the cluster is obtained, which hypothetically follows a Gaussian
distribution [18] (Figure 6.4).
The G-means clustering algorithm is based on the hypothesis that every

cluster has some underlying Gaussian distribution. G-means initiates the
k-medoids clustering algorithm with a low value of k. For each resulting
cluster, the algorithm tests whether the samples in the cluster follow a Gaus-
sian distribution. If the latter is the case, then the cluster is assumed to
be correct, otherwise, the G-means clustering algorithm ’splits’ the cluster
by selecting two new medoids from the cluster. The k-medoids algorithm is
repeated on the entire data collection with the extended set of medoids. It
follows that each split operation results in an increase of k by 1. The G-means
clustering terminates as soon as each cluster follows a Gaussian distribution.
Consequently, by initializing k to 1, the G-means clustering algorithm will
automatically attempt to find koptimal [18]. According to experiments con-
ducted by the authors of [18], the G-means algorithm successfully determined
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koptimal for several data sets. Unfortunately, no other independent compar-
ative studies on the optimality of G-means clustering have been published.
Also note that the resulting koptimal is not necessary identical to the koptimal

discovered via the silhouette coefficient or the SEp as discussed in the pre-
vious Sections; there does not exist a consensus on the value koptimal should
yield.
To assess whether the data points in a cluster follow a Gaussian distribution,
the G-means algorithm utilizes the Anderson-Darling normality statistic [2]
which has been corrected for the sample size [41]. The full algorithm has
been given in Algorithm 6. Since we do not have a multidimensional vec-
tor describing a sample, we use the distance (similarity) from a sample to
its medoid, to project our samples onto a 1-dimensional surface. Given the
symmetric, bell-shaped Gaussian distribution, we assume that all resulting
distances can be placed on the right hand side of the bell curve, and that
the sample mean X̄ yields a small positive value ε, e.g. 0 ≤ ε ≤ 0.3. More-
over, the standard normal Cumulative Distribution Function (CDF) φ(x)
approaches 1 for x = 1. To split a cluster which does not follow a Gaussian
distribution, the authors of [18] suggest two approaches to select two new
medoids from the respected cluster. Unfortunately, both approaches require
a vector representation of the samples. Using the similarity matrix it would
be possible to calculate vector representations of the graphs using multidi-
mensional scaling, however for simplicity we will use the medoid selection
procedure as used for the k-means++ algorithm (Algorithm 5) to select the
new medoids.

6.3.4 Experimental results

To obtain some insight in the behavior of SEp and the silhouette coefficient as
metrics for establishing koptimal, both functions are first applied on an artifi-
cial data set. The artificial data set contains 30 objects. Pairwise similarities
for these objects (Figure 6.5) are manually chosen such that all objects can
be grouped into 5 well-separated clusters of different sizes.

Figure 6.6a plots the number of clusters against the SSE of the artificial
data. Since the quality of the clustering is susceptible to the choice of initial
centroids of k-means++ clustering, the clustering has been repeated 10000
times for each k. The lowest SSE score obtained in such a sequence, i.e. the
best clustering, is used to draw the figure. The optimal number of clusters
koptimal is clearly visible in Figure 6.6a due to the so-called ’elbow’ at k = 5.
A similar observation can be made from the silhouette plot in Figure 6.6b:
the silhouette coefficient peaks at koptimal. Also, the elbow in the graph of



CHAPTER 6. CLUSTERING 39

Algorithm 6: Anderson-Darling test for Normality, with sample
size correction

Input: List of data samples X : [x0, x1, ..., xi], sample size n = |X|
Output: true if X is Gaussian, false otherwise

1 Calculate sample mean X̄ and standard deviation σ;

2 Standardize the values: Y = [x−X̄
σ
|x← X ];

3 Sort Y ascending;
In the following equation, φ(x) is the standard normal CDF:

4 A2 = − 1
n

∑n

i=1 (2i− 1)(lnφ(Yi)) + (ln(1− φ(Yn+1−i)))− n;
Adjust for the sample size [41]:

5 A2
∗ = A2(1 + 4

n
− 25

n2 );
Test whether X follows a Gaussian distribution with a significance
level of 1%. The critical value 1.8692, which corresponds with the
1% significance level, is taken from [2].

6 return A2
∗ ≤ 1.8692
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Figure 6.5: Artificially created similarity matrix of 30 objects. There are
5 well-separated, tight clusters of varying size. The colors reflect pairwise
similarity scores of the objects.
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Figure 6.6: Finding koptimal in an artificial data set

the average a(xi) score is informative. When k < koptimal, natural clusters
are merged together and an increase of k will cause a rapid decrease of the
average a(xi) score. As soon as k becomes greater or equal to koptimal, the
slope of the a(xi) curve decreases (Figure 6.6b).

Figure 6.7 plots the same information as Figure 6.6, but this time for the
collection of 194 real malware samples. Interestingly, the SEp curves for
different values of p in Figure 6.7a do not reveal an elbow as can be ob-
served in Figure 6.6a for the artificial data. Similarly, no clear peak in the
silhouette plot (Figure 6.7b) is visible either, making it impossible to define
koptimal. Consequently, we have to conclude that it is infeasible to partition
the malware samples in cohesive, well-separated clusters based on our graph
similarity scores, and hence we cannot obtain the partitioning of the sam-
ples in the 24 families as proposed by F-Secure Corporation in an automated
fashion.
The absence of well-separated clusters where all samples are ordered in a
spherical fashion around the cluster center is also supported by the results
obtained via the G-means clustering algorithm. Several applications of the
G-means cluster algorithm resulted in 100 or more clusters, which is not
a realistic number for just 194 samples. The G-means algorithm could be
adapted to test for other distributions besides the Gaussian distribution,
but based on our experiments we do not believe that the sample to medoid
distances follow any well known distribution in particular.
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Figure 6.7: Finding koptimal in the set with 194 pre-classified malware samples.

6.4 DBSCAN clustering

In the previous chapter, we have concluded that the entire sample collec-
tion cannot be partitioned in well-defined clusters, such that each cluster is
both tight and well-separated. Central to the k-medoid clustering algorithm
stands the selection of medoids. A family inside the data collection is only
correctly identified by k-medoids if there exists a medoid with a high sim-
ilarity to all other samples in that family. This, however, is not necessary
the case with malware. Instead of assuming that all malware samples in a
family are mutually similar to a single parent sample, it is more realistic to
assume that malware evolves. In such an evolution, malware samples from
one generation are based on the samples from the previous generation. Con-
sequently, samples in generation n likely have a high similarity to samples
in generation n + 1, but samples in generation 0 are possibly quite different
from those in generation n, n� 0. This evolution theory suggests that there
are no clusters where the samples are positioned around a single center in a
spherical fashion, which makes it much harder for a k-means based clustering
algorithm to discover clusters. Although it is not possible to partition all 194
samples in well defined clusters, both Figure 6.2 and Figure 6.3 nevertheless
reveal a strong correspondence between the clusters found by the k-medoids
algorithm, and the clusters as predefined by F-Secure Corporation. This ob-
servation motivates us to investigate partial clustering of the data. For this
purpose, we apply the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) clustering algorithm [44, 12]. DBSCAN clustering searches
for dense areas in the data space, which are separated by areas of low density.
Samples in the low density areas are considered noise and are therefore dis-
carded, thereby ensuring that the clusters are well-separated. An advantage
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of DBSCAN clustering is that the high density area’s can have an arbitrary
shape; the samples do not necessarily need to be grouped around a single
center.
DBSCAN distinguishes between three types of sample points:

• Core points. A sample is a Core point if it has more than a predeter-
mined number MinPts of samples in its direct vicinity. The vicinity is
specified by a radius Rad: a distance or a similarity score.

• Border points: samples which are not Core points themselves, but are
within the radius Rad of a Core point.

• Noise points: all samples which are neither Core points nor Border
points.

Formally, we can define the three categories of samples as follows:

• Core points: Pc = {x ∈ χ, |NRad(x)| > MinPts}, where
NRad(x) = {y ∈ χ, σ(x, y) ≤ Rad}

• Border points: Pb = {x ∈ (χ\Pc), ∃y ∈ Pc : σ(x, y) ≤ Rad}

• Noise points: Pn = χ\(Pc ∪ Pb)

An informal description of the DBSCAN clustering algorithm is given in
Algorithm 7.

Algorithm 7: DBSCAN clustering algorithm

Input: Set of call graphs χ, MinPts, Rad
Output: Partial clustering of χ

1 Classify χ in Core points, Border points and Noise;
2 Discard all samples classified as noise;
3 Connect all pairs (x, y) of core points with σ(x, y) ≤ Rad;
4 Each connected structure of core points forms a cluster;
5 For each border point identify the cluster containing the nearest
core point, and add the border point to this cluster;

6 return Clustering

The question now arises how to select the parameters MinPts and Rad.
Based on experimental results, the authors of [12] find MinPts = 4 to be a
good value in general. To determine a suitable value for Rad, the authors
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Figure 6.8: Finding Rad and MinPts

suggest to create a graph where the samples are plotted against the distance
(similarity) to their k-nearest neighbor in ascending order. Here k equals
MinPts. The reasoning behind this is as follows: Core or Border points are
expected to have a nearly constant similarity to their k-nearest neighbor, as-
suming that k is smaller than the size of the cluster the point resides in, and
that the clusters are roughly of equal density. Noise points, on the contrary,
are expected to have a relatively larger distance to their k-nearest neighbor.
The latter change in distance should be reflected in the graph, since the dis-
tances are sorted in ascending order.
Figure 6.8a shows the similarity of a malware sample to its k-nearest neigh-
bor, for various k. Arguably, one can observe rapid increases in slope both
at Rad = 2.2 and Rad = 4.8 for all k. A Rad = 4.8 radius can be considered
too large to apply in the DBSCAN algorithm since such a wide radius would
merge several natural clusters into a single cluster. Even though Rad = 2.2
seems a plausible radius, it is not evident from Figure 6.8a which value
Minpts should yield. To circumvent this issue, DBSCAN clustering has
been performed for a large number of Minpts and Rad combinations (Figure
6.8b). For each resulting partitioning, the quality of the clusters has been
estimated with the silhouette coefficient. From Figure 6.8b one can observe
that the best clustering is obtained for Minpts = 3 and Rad = 0.3. While
comparing Figure 6.8b against Figure 6.8a, it is not clear why Rad = 0.3 is a
good choice. We however believe that the Silhouette coefficient is the more
descriptive metric.

Finally, Figure 6.9 gives the results of the DBSCAN algorithm for Minpts =
3 and Rad = 0.3 in a frequency diagram. Each colored square gives the
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frequency of samples from a given family present in a cluster. The top two
lines of the diagram represent respectively the total size of the family, and
the number of samples from a family which were categorized as noise. For
example, the Boaxxe family contains 17 samples in total, which were divided
over clusters 1 (14 samples), 6 (1 sample), and 17 (2 samples). No samples
of the Boaxxe family were classified as noise. The fact that the Boaxxe fam-
ily is partitioned in multiple clusters is not surprising; Figure 5.2b already
revealed that the Boaxxe family as defined by human analysts at F-Secure
Corporation contains several samples which structurally differ significantly
from the other samples in the family.
The results from the DBSCAN algorithm on the malware samples are very
promising. Except for three clusters, each cluster identifies a family correctly
without mixing samples from multiple families. Furthermore, the majority
of samples originating from larger families were classified inside a cluster and
hence were not considered noise. Families which contain fewer than Minpts
samples are mostly classified as noise (e.g. Vundo, Blebloh, Startpage,etc),
unless they are highly similar to samples from different families (e.g. Au-
torun). Finally, only the larger families Veslorn (8 samples) and Redosdru (9
samples) were fully discarded as noise. Closer inspection of these two fami-
lies indeed showed that the samples within the families are highly dissimilar
from a call graph point of view.
Finally, Figure 6.10 depicts a plot of the diameter and the cluster tightness,
for each cluster in Figure 6.9. The diameter of a cluster is defined as the simi-
larity of the most dissimilar pair of samples in the cluster, whereas the cluster
tightness is the average similarity of a pair of samples. Most of the clusters
are found to be very coherent. Only for clusters 2, 6, and 7, the diameter
differs significantly from the average pairwise similarity. For clusters 2 and
6, this is caused by the presence of samples from 2 different families which
are still within Rad distance from each other. Cluster 7 is the only excep-
tion where samples are fairly different and seem to be modified over multiple
generations. Lastly, a special case is cluster 16, where the cluster diameter is
0. The call graphs in this cluster are isomorphic; one cannot distinguish be-
tween these samples based on their call graphs, even though they come from
different families. Closer inspection of the samples in cluster 16 by F-Secure
Corporation revealed that the respected samples are so-called ’droppers’. A
dropper is an installer which contains a hidden malicious payload. Upon exe-
cution, the dropper installs the payload on the victim’s system. The samples
in cluster 16 appear to be copies of the same dropper, but each with a dif-
ferent malicious payload. Based on these findings, the call graph extraction
has been adapted such that this type of dropper is recognized in the future.
Instead of creating the call graph from the possible harmless installer code,
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Figure 6.9: DBSCAN clustering with Minpts = 3, Rad = 0.3. The colors
depict the frequency of occurrence of a malware sample from a certain family
in a cluster.

the payload is extracted from the dropper first, after which a call graph is
created from the extracted payload.
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Chapter 7

Conclusion

The main subject of this thesis has been the investigation of means to com-
pare malware mutually via their call graph representations. Moreover, we ex-
plored automated identification and classification of malware families. New
samples which are found to be very similar to known malicious code, are likely
mutations of the same malicious code. Automated recognition of similarities
as well as differences among these samples will ultimately aid and accelerate
human analysis, rendering it no longer necessary to write detection patterns
for each individual sample within a family. Instead, anti-virus engines can
employ generic signatures targeting the mutual similarities among samples
in a malware family.
After an introduction of call graphs in Chapter 2 and a brief description
on the extraction of call graphs from malware samples, Chapter 3 discusses
methods to compare call graphs mutually. Graph similarity is expressed via
the Graph Edit Distance, which, based on our experiments in Chapter 6,
seems to be a viable metric. Nevertheless, using this metric, it remains to
be seen how well it is possible to distinguish malware from benign software.
Especially benign software infected with malicious code could pose a serious
challenge, because the malicious sample would possess a high similarity to
the originally benign version of the software.
Another issue of concern regarding the GED is its expressiveness of malware
similarity. Currently, the GED metric only considers elementary local oper-
ations such as vertex (edge) deletion and addition or vertex relabeling. It
is however unclear how well these edit operations capture the reality. Possi-
bly the virus writer could make simple high level modifications on the virus,
which result in a large number of elementary edit operations from a call
graph perspective. An overview of frequently applied malware mutations is
given in [7]. We suggest to incorporate some of these mutations in the GED

47
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metric.
Pairwise graph similarity is calculated by finding a graph matching which
minimizes the GED. Unfortunately, exact graph matching algorithms are in-
tractable for large graph instances. Consequently, Sections 3.4 and 3.5 elabo-
rate on two approximation algorithms for finding accurate graph matchings.
The first algorithm is based on the Hungarian algorithm, whereas the second
one is a Genetic Search algorithm. To obtain accurate graph matchings, both
algorithms require information about pairwise vertex (function) similarties
for the graphs under comparison. This information is provided through cost
functions as discussed in Chapter 4. As it turns out, the computationally
least expensive cost function based on neighborhood comparisons and rela-
beling cost (Equation 4.2) as applied in [21, 50] provides the best results, i.e.
matchings with the lowest Graph Edit Distance.
Currently, the cost functions in Chapter 4 only consider structural properties.
Therefore, a natural extension of the cost functions is to compare the content
of the functions semantically. The latter can for instance be accomplished by
the approach proposed by Walenstein, Venable, et. al. in [46]. They suggest
to describe each function as a vector of features. As an example of a feature,
they give the frequencies of opcode n-grams. Next, the similarity of a pair
of functions is estimated by taking the cosine similarity of their respected
feature vectors. The use of opcode frequencies to characterize functions is
also encouraged by the results of Bilar as he discovered that opcodes can be
used to distinguish malware from benign software [4].
To facilitate the discovery of malware families, Chapter 6 applies several
clustering algorithms on a set of malware call graphs. Verification of the
classifications is performed against a set of 194 unique malware samples,
manually categorized in 24 malware families by the data security company
F-Secure Corporation. The clustering algorithms used in the experiments
include various versions of the k-medoids clustering algorithm, as well as the
DBSCAN algorithm. One of the issues encountered with k-medoids cluster-
ing is the specification of the desired number of clusters. Metrics to determine
the optimal number of clusters did not yield conclusive results, and hence it
followed that k-means clustering is not effective to discover malware families.
Much better results on the other hand are obtained with the density-based
clustering algorithm DBSCAN; using DBSCAN we were able to successfully
identify malware families. At the date of writing, automated classification
is also attempted on larger data sets consisting of a few thousand samples.
F-Secure is currently analyzing the results, but since this is a time consuming
process, the results could not be included in time in this thesis.
Future goals are to link the malware identification and family recognition soft-
ware to the live stream of daily incoming samples. Observing the emergence
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of new malware families, as well as automated implementation of protection
against malware families, belong to the long term prospectives of malware
detection through call graphs.
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