

**Business from technology** 

# **Towards secure Internet**

TIVIT results and business forum, 12.4.2011 Prof. Mika Rautila VTT Technical Research Centre of Finland

### Tivit Future Internet Program 2008 - 2013

Vision: Future Internet = a mission critical backbone of global information society

**Mission**: Enhance the Internet technology and ecology as a *platform for innovation* while providing strong governance over the use of the network resources and information

4 yr Strategic Research Agenda: www.futureinternet.fi



**Phase 2 Partners** (6/2009 – 3/2011):

CSC – IT Center for Science, Cybercube, F-Secure, Ericsson, Nokia, Nokia Siemens Networks, Stonesoft, TeliaSonera Finland, Aalto University, Universities of Helsinki, Jyväskylä and Turku, Tampere University of Technology, VTT Technical Research Centre of Finland, Tivit

14.4.2011

# **Tivit Future Internet**

2





## **Trends in security landscape**

The following trends are characteristic for the development of security landscape of the Internet over the past few years:

- Amount of malicious activity has increased rapidly.
- Attacks have become web based.
- Attackers have moved away from nuisance towards activities that are motivated by financial gain.
- Professionalization and commercialization of malicious activities.



#### **Trends in security landscape**



New malicious code signatures

Symantec Internet security threat report XV, 2010



#### **Trends in security landscape**



Figure 1: Largest DDoS Attack – 49 Gigabits Per Second

Source: Arbor Networks, Inc.



## **Trends in security landscape**

Some typical goals of the attackers are as follows:

- Theft of credit card and financial account information
- Theft of identity information
- Taking control of target computers
- Extortion
- Ruining critical systems and infrastructure



#### **Concrete research problems**

How to improve security of Internet so that the society cannot be damaged through the Internet.

This goal translated to the following subproblems:

- how modern data analysis can be used to improve information security,
- how trust, trustworthiness and reputation of objects can be evaluated and used to protect users,
- how to mitigate the unwanted traffic problem.



# Data analysis for information security

- Malicious programs are automatically created.
- Hence anti-virus software vendors receive tens of thousands of new potentially malicious program samples every day.
- Signature based detection must be augmented with new approaches.
- Two different machine learning based approaches:
  - Analysis based on dynamic properties of programs
  - Analysis based on static properties of programs



# Data analysis for information security Call graph similarity based clustering

- One way to automatically generate new malicious samples is to slightly modify an existing one. Hence the static structure of the two versions are often similar.
- Measure distance between two call graphs by the number of elementary graph modifications required to make the call graphs isomorphic (graph edit distance).
- Cluster samples using graph edit distance.



10



# Data analysis for information security Classification using SVM

- Behaviour of samples are described by textual fields, e.g., field containing name of created file.
- Aim at good precision with good enough recall, i.e.,
  - if a sample is classified as malicious it is malicious with high probability, and
  - big enough proportion of malicious samples are classified as malicious.
- An SVM based classifier using Gaussian kernel
- Evaluated with a dataset containg ~250k samples from a time span of about 2.5 years.
- Cumulatitive precision was 99.923% and recall 53.52%.



# **Trust and reputation**

- Mobile devices have been becoming open platforms to install and execute various applications. Users' trust to an application will become a crucial issue that impacts its success.
- Explore trust of mobile applications based on users' behaviors, and propose a conceptual trust model
- Research question: what interaction behaviors are related to the user's trust in a mobile application.
- Hypothesis: user's trust in a mobile application can be studied during the appliaction usage.



#### **Trust and reputation**

#### Trust related behvior

| BEHAVIOR TYPE           | HYPOTHESES                                                                        |
|-------------------------|-----------------------------------------------------------------------------------|
| §1 Using Behavior       | §1.1 The user trusts a mobile application more, if he/she uses it with more       |
| (UB) (behaviors about   | elapsed time and number and frequency of usages;                                  |
| normal application us-  | §1.2 Trust in a mobile application could influence the user's behavior regarding  |
| age)                    | risky, urgent or important tasks;                                                 |
|                         | §1.3 The user becomes more proficient in using a mobile application if he/she     |
|                         | has experienced more features of the application.                                 |
| §2 Reflection Behav-    | §2.1 Good/bad performance of a mobile application could increase/decrease the     |
| ior (RB) (behaviors af- | user's usage trust;                                                               |
| ter confronting appli-  | §2.2 Good/bad application performance or usage experience could influence the     |
| cation problems or      | user's behavior related to risky, urgent or important tasks.                      |
| having good/bad ex-     |                                                                                   |
| periences)              |                                                                                   |
| §3 Correlation Behav-   | §3.1 For two similar functioned applications, higher usage rate (i.e. elapsed us- |
| ior (CB) (behaviors     | age time and frequency, the number of usages) means more trust;                   |
| correlated to similar   | §3.2 For two similar functioned applications, the user would like to use more     |
| functioned applica-     | trustworthy one to do risky, urgent or important tasks;                           |
| tions)                  | §3.3 Trust in a mobile application influences the behavior of recommendation.     |

13



# **Trust and reputation**

#### **UB1: normal usage behavior**

- 1. The more times you use the messaging, the more you trust it.
- 2. The more frequently you use the messaging, the more you need it.
- 3. The longer time you use the messaging, the more you trust it.





## **Unwanted traffic**

- Network level payload based access policy
  - In traditional firewalls access policy decisions are based on network address information in the packets
  - In payload based access policy application protocol or application is first identified and based on this information access policy decision is made.
  - This means that in the beginning of each connection traffic is first allowed and after the application protocol has been identified the policy decision is made.



# VTT creates business from technology